X-32: The Fighter Plane That Almost Replaced the F-35

X-32: The Fighter Plane That Almost Replaced the F-35 (Thumbnail : Foto Ilustration) :The Boeing X-32 was a concept demonstrator aircraft in the Joint Strike Fighter contest. It lost to the Lockheed Martin X-35 demonstrator which was further developed into the Lockheed Martin F-35 Lightning II. In 1993, the Defense Advanced Research Projects Agency (DARPA) launched the Common Affordable Lightweight Fighter project (CALF). The project's purpose was to develop a stealth-enabled design to replace all of United States Department of Defense lighter weight fighter and attack aircraft, including the F-16 Fighting Falcon, McDonnell Douglas F/A-18 Hornet, and vertical/short takeoff / vertical landing (V/STOL) AV-8B Harrier II.[1] Around the same time the Joint Advanced Strike Technology (JAST) project was started.[2] In 1994, the U.S. Congress ordered the two to be merged into the Joint Strike Fighter Program. Many companies took part in the first phase of this project, which involved drafting concept aircraft designs for submission to the Department of Defense. On 16 November 1996, Boeing and Lockheed Martin were awarded contracts for them to produce two of their concept demonstrator aircraft (CDA) each. Under the contract, these fighters were required to demonstrate conventional take-off and landing (CTOL), carrier take-off and landing (CV version), and short take-off and vertical landing (STOVL). They were also expected to include ground demonstrations of a production representative aircraft's systems, such as the Preferred Weapon System Concept (PWSC). One major departure from previous projects was the prohibition of the companies from using their own money to finance development. Each was awarded $750 million to produce their two aircraft – including avionics, software and hardware. This limitation promoted the adoption of low cost manufacturing and assembly techniques, and also prevented either Boeing or Lockheed Martin from bankrupting themselves in an effort to win such an important contest. Designing the X-32 Boeing's strategy for a competitive advantage was to offer substantially lower manufacturing and life-cycle costs by minimizing variations between the different JSF versions. The X-32 therefore was designed around a large one piece carbon fiber composite delta wing. The wing had a span of 9.15 meters, with a 55-degree leading edge sweep and could hold up to 20,000 pounds of fuel. The purpose of the high sweep angle was to allow for a thick wing section to be used while still providing limited transonic aerodynamic drag, and to provide a good angle for wing-installed conformal antenna equipment.[3] The wing would prove a challenge to fabricate.[4][5] The compete-on-cost strategy also led Boeing to pick a direct-lift thrust vectoring system, for the Marines' short take-off and vertical landing (STOVL) requirement, as this would only necessitate the addition of a thrust vectoring module around the main engine.[4] However, this choice required the engine to be mounted directly behind the cockpit, and moved the center of gravity forward from its usual position in jet fighters (towards the rear of the airplane) to enable a neutral-attitude hover. Boeing had proposed, in the 1960s, a similar supersonic fighter with a mid-center-of-gravity mounted engine with vectored thrust nozzles, but this never proceeded beyond pictures published in Aviation Week.[citation needed] By comparison, the Lockheed entry looked like, if anything, a smaller version of the F-22 Raptor stealth fighter. The Boeing in-house nickname of the X-32 was the "Monica".[6] Yet another effect of the selection of the direct-lift system was the large chin-mounted air intake, akin to the Vought F-8 Crusader and LTV A-7 Corsair II. This was required to feed sufficient air to the main engine (to provide the thrust necessary to hover) during the zero horizontal velocity phase, when it could not exploit ram-air pressure. A knock on effect of this large intake, was the potential direct visibility of the compressor blades to radar (see radar cross-section). Mitigation possibilities included variable baffles designed to block incoming radio waves without adversely affecting airflow.[3] Design changes www.TribunIndo.Comm Translate My Video : Visit : Visit me here : Brother Channel : Contact US Here : twitte Subscribe & More Videos: https://goo.gl/N4rCTq Thank for watching, Please Like Share And SUBSCRIBE!!! #boeingfighterjet, #militaryupdates
  • 0 Hits